
Architectural Impact on Performance

of a Multilevel Database System

Myong H. Kang and Judith N. Froscher Ravi Mukkamala

Naval Research Laboratory Old Dominion University

Information Technology Division Department of Computer Science

Washington, D.C. 20375 Norfolk, VA 23529

Abstract

Since protection and assurance are the primary con-
cerns in MLS databases, performance has often been
sacri�ced in some known MLS database approaches.
Motivated by performance concerns, a replicated ar-
chitecture approach which uses a physically distinct
backend database management system for each secu-
rity level is being investigated.
This is a report on the behavior and performance

issues for the replicated architecture approach. Espe-
cially, we compare the performance of the SINTRA1

MLS database system to that of a typical conventional
(non-secure, single-level) database system. After ob-
serving the performance bottlenecks for the SINTRA,
we present solutions that can alleviate them.

1 Introduction

The multilevel data management security summer
study in 1982 [1] recommended three near-term ap-
proaches to solving the multilevel secure (MLS)
database management system (DBMS) problem: In-
tegrity lock, Kernelized, and Distributed DBMS.
The integrity lock approach [Den85] attempts

to combine encryption techniques with o�-the-shelf
database management systems. The trusted frontend
applies an encrypted checksum to data in an untrusted
database. The integrity lock approach is computation-
ally intensive and has a potential covert channel. Since
the trust is in the frontend �lter, this architecture is
susceptible to Trojan horse attack. Hence this ap-
proach cannot be used for highly assured MLS-DBMS
(e.g., B3 system in terms of Trusted Computing Sys-
tems Evaluation Criteria (TCSEC) [3]).
The kernelized approach [11] relies on decompos-

ing the multilevel database into single level databases

1Secure INformation Through Replicated Architecture

which are stored separately, under the control of a se-
curity kernel enforcing a mandatory access control pol-
icy. The kernelized approach can yield reduced perfor-
mance due to the need for recombining single level data
to produce multilevel data.

Two basic architectural approaches were suggested
under the distributed approach: (i) Each DBMS has
data at a single security level, and (ii) Each DBMS
contains data at a given security level and all data at
lower security levels (replicated approach).

The �rst approach has been investigated [6, 12]. This
approach has inherent problems because higher level
queries have to be propagated to lower level untrusted
backend to request data. Hence, we don't expect this
approach to be used for highly assured MLS-DBMS.
This approach also can yield reduced performance be-
cause it may require fragments to be transferred from
a low to a high backend DBMS to present a multilevel
relation to users.

The replicated architecture approach [5] uses a physi-
cally distinct backend database management system for
each security level. Each backend database contains

information at a given security level and all data at
lower security levels. The system security is assured by
a trusted frontend which permits a user access to only
the backend database system which matches his/her
security level.

Even though all the above approaches have been
prototyped, few performance results have been pub-
lished. In this paper, we concentrate on the replicated
architecture approach. We study the behavior of this
approach and compare the performance of the SIN-
TRA database system which is based on this approach
to that of a typical conventional (non-secure, single-
level) database system. In this paper, main perfor-
mance metrics is throughput. We have not considered
price/performance. We believe those metrics are mean-
ingful only after commercial venders produce B3/A1

MLS DBMSs because the comparison between the price
of extra hardware and that of B3/A1 software will not
be conclusive until that time.

This paper is organized as follows. A general con-
cept of the replicated architecture, and its advantages
and potential problems are discussed in section 2. Sec-
tion 3 presents security and transaction models of the
SINTRA system. The simulation model and the rele-
vant parameters are described in section 4. Section 5
describes experiments that we performed. We summa-
rize the lessons learned in section 6.

2 The Replicated Architecture

The SINTRA database system, which is currently be-
ing prototyped at the Naval Research Laboratory, is a
multilevel trusted database management system based
on the replicated architecture. The SINTRA database
system consists of one trusted frontend (TFE) and sev-
eral untrusted backend database systems (UBD). The
role of a TFE includes user authentication, directing
user queries to the backend, maintaining data consis-
tency among backends, etc. Each UBD can be any
commercial o�-the-shelf database system. Figure 1 il-
lustrates the SINTRA architecture.

.

.

.

Frontend

Trusted

Confidential
Secret

User
Interface

User
Interface

Confidential

Top Secret
Secret

Confidential

Untrusted

Backends

Figure 1: The SINTRA Architecture.

Since each UBD in a replicated architecture contains
data at a given security level and all data from lower
security levels, updates have to be propagated to higher
security level databases to maintain data consistency
among replicas. There are some problems which are
related to this propagation.

1. If the propagation of update transactions is not
carefully controlled, inconsistent database states
among backend databases can be created. Con-
sider this example. Two con�dential level update
transactions Ti and Tj are serialized in the order of

(Ti, Tj) at the con�dential level backend database
system. Since these two transactions are update
transactions, these transactions have to be propa-
gated to the secret level. If these two transactions
are serialized in the order of (Tj , Ti) at the secret
level, an inconsistent database state between con-
�dential and secret level backend databases may
be created. Therefore, the serialization order in-
troduced by the local scheduler at the user's ses-
sion level must be maintained at the higher level
UBDs. This condition ensures data consistency
for the complete lattice [7].

2. Since lower level update transactions have to be
propagated to higher level databases, high-level
databases can be overloaded with lower level up-
date transactions. Hence, the SINTRA system po-
tentially su�ers from performance degradation due
to uneven workloads at backend computers.

A solution to problem 1 has been proposed in [7]. A
brief description of the proposed solution is as follows:

Since each backend DBMS does not guar-
antee the serialization order of transactions be
the same as their submission order, an exter-
nal control of serialization order is necessary.
Therefore, update projections are sent to a
backend DBMS one after another. Speci�-
cally, if Ti is serialized before Tj , then send Ti
and wait until Ti is committed at the backend
DBMS, and then send Tj .

In this paper, we study the behavior of the SINTRA
system, especially problem 2, in detail and suggest so-
lutions.

3 The Model

In this section, brief descriptions of security and trans-
action models are presented.

3.1 Security Model

The security model used here is based on that of Bell
and LaPadula [2]. The database system consists of a
�nite setD of objects (data item) and a set T of subjects
(transactions). There is a lattice S of security classes
with ordering relation <. A class Si dominates a class
Sj if Si � Sj. There is a labeling function L which
maps objects and subjects to a security class:

L: D [T [C ! S

where C is a set of backend database systems. Security
class u covers v in a lattice if u > v and there is no
security class w for which u > w > v.

We consider two mandatory access control require-
ments:

1. If transaction Ti reads data item x then L(Ti) �
L(x).

2. If transaction Tj writes data item x then L(Tj) =
L(x).

3.2 Transaction Model

We adopt a layered model of transactions, where a
transaction is a sequence of queries, and each query
can be considered as a sequence of reads and writes.
For example, replace and delete queries can be viewed
as a read operation followed by a write operation, in-

sert can be viewed as a write operation, and retrieve

can be viewed as a read operation. A layered view of
two transactions T1 and T2 is shown in �gure 2.

w23[x]r23[x]w22[y]r21[z]w13[y]r13[y]w12[u]w11[z]r11[z]

T2T1

q23q22q21q13q12q11

l(0)

l(1)

l(2)

Figure 2: Layered model of two transactions.

De�nition 1. A transaction Ti is a sequence of
queries, i.e., Ti = <qi1, qi2, ..., qin>. Each query, qij,
is an atomic operation and is one of retrieve, insert,

replace, or delete.

To model the propagation of updates produced by
a given transaction to higher security level databases,
update projection is de�ned.

De�nition 2. An update projection Ui, which
corresponds to a transaction Ti, is a sequence of up-
date queries, e.g., Ui = <qi2; qi5; :::; qim> obtained from
transaction Ti by simply removing all retrieve queries.

4 Simulation Model

We have developed a simulation model for the SIN-
TRA database. Our simulator is written in MODSIM
II which is an object-oriented, discrete-event simula-
tion language. The simulator can be described in three

parts: (i) External user model, (ii) SINTRA global
view which describes how backend DBMSs are con-
nected, and (iii) each DBMS.

4.1 External User and Transaction

Modeling

There are a �xed number of terminals at each security
level. There are also a �xed number of data objects at
each level. For example, if there are n1 data objects at
level 1 then there are (n1 + n2) data objects at level 2
where n1 data objects are replicas from level 1 and n2

data objects are from level 2 itself.

Simulation parameters that are related to users and
transactions are presented in table 1. A transac-

Table 1: Simulation parameters that are related to
users and transactions.

Parameter Meaning
NumTerms[i] Number of terminals at level i
ThinkTime Mean think time at each terminal
MaxTranSize Max # of queries in a transaction
MinTranSize Min # of queries in a transaction
MaxQuerySize Max # of data objects in a read set
MinQuerySize Min # of data objects in a read set
RetrieveProb Probability of retrieve query
InsertProb Probability of insert query
deleteProb Probability of delete query
ReplaceProb Probability of replace query
WriteProb Write Probability in update transactions
ReadDownProb[i] Read-down Probability at level i

tion that originates from a terminal consists of a se-
ries of queries. Each query, in turn, consists of read
and write sequences. Each read or write sequence con-
sists of a set of data objects. We believe that most of

the transactions will be submitted by application pro-
grams. Hence, our interactive workloads model has a
thinking period between transactions. Think time is
de�ned as the time between the commit time of one
transaction and the start time of the next transaction
at each terminal. ThinkTime parameter is the mean of
an exponentially distributed think time.

A transaction consists of a number of queries which
are uniformly distributed between MaxTranSize and
MinTranSize. The type of queries in transactions
are determined by the ratio among RetrieveProb,
InsertProb, deleteProb and ReplaceProb.

A retrieve query consists of only read sequences (i.e.,
empty write sequences) and an insert query consists
of only write sequences. Each read or write sequence
consists of a number of data objects that is uniformly

distributed between MaxQuerySize and MinQuerySize.
Delete and replace queries consist of non-empty read
and write sequences. The read sequences of delete and
replace queries consist of a number of data objects that
is uniformly distributed between MaxQuerySize and
MinQuerySize. The data objects in the write sequences
of delete and replace queries are selected replicas from
those of their read sets (i.e., read before write).
WriteProb parameter represents the probability of

duplicating data objects from the read set to its write
set (i.e., WriteProb% of data objects in the read set
will be copied to write set). ReadDownProb parameter
speci�es the probability of reading data object replicas
from lower levels.

4.2 SINTRA Modeling: Global View

The general structure of our simulation model is pre-
sented in �gure 3.

DBMS
UpMgr

DBMS
UpMgr

DBMS
UpMgr

DBMS

Trusted

Connection

Scheduler

tra
ns

ac
tio

n

ac
k

transaction
ack

Level 4

Level 3

Level 2

Level 1

update projection

Users

Global

Figure 3: SINTRA simulation model.

There are two components in the TFE: the trusted
connection and global schedulers. The trusted connec-
tion checks the security level of a user transaction and
delivers the transaction to the transaction manager of
DBMS at the same level. When a user transaction is
committed, an acknowledgement (ack) is sent to the
terminal through this trusted connection. If the user
transaction is an update transaction, then the corre-
sponding update projection is sent to the global sched-
uler in TFE which in turn sends it to the next level
update projection manager (UpMgr).

When an update projection is passed from a backend
to the frontend, it is written on disk for recovery pur-
pose [10]. FrontCPUTime and FrontDiskTime param-

eters specify the time to receive an update projection,
write it on a disk, and send it to the next level update
projection manager (see table 2).

The update projection manager receives update pro-
jections from the global scheduler and sends them to
the transaction manager of DBMS, one by one, to pre-
serve the serialization order which was determined at
a lower level DBMS [7]. In other words, an update
projection cannot be sent to DBMS if the previously
submitted update projection has not been committed.
If an update projection cannot be sent to DBMS then
it will be stored in a queue.

Simulation parameters that are related to the fron-
tend are presented in table 2. Our simulator assumes

Table 2: Simulation parameters that are related to the
frontend.

Parameter Meaning
FrontDiskTime Disk read/write time
FrontCPUTime Processing time
Comm Time to pass a message between

front and back ends

that there is one CPU and one disk drive in the fron-
tend machine. The CPU and the disk are de�ned as
resource objects in MODSIM II. A resource object in
MODSIM II provides an asynchronous blocking mech-
anism that allows simulation time to elapse while wait-
ing for a resource and a statistics gathering mechanism
to detect potential bottlenecks.

4.3 Backend DBMS Modeling

Each backend DBMS consists of three components: the
transaction manager, the concurrency control manager,
and the resource manager. A simulationmodel for each
DBMS is presented in �gure 4.

The transaction manager is a tra�c controller be-
tween the concurrency control manager and the re-
source manager. As far as the transaction manager
is concerned, there is no di�erence between user trans-
actions and update projections (i.e., they are treated
in the same manner).

The concurrency control manager
maintains Locktable and uses strict two phase lock-
ing protocol. Hence, all locks will be released when
a transaction commits. The unit of granting locks is
a query. If all locks for read and write sets within a
query can be granted then it grants locks and returns
the query to the transaction manager. Otherwise it
will keep the query in the Blocked queue until locks

Transaction Manager Concurrency Control

Manager

Resource Manager

lockgranted
lockcleared

aborted

process
commit

processed
committed

commit- receive

- aborted

- lockcleared

- lockgranted

- processed

- committed

- requestlocks

- commit

- checktimeout

- process

- commit

. . .

DISKs

Blockedqueue
LockTable

CPU Pool

Connection
Trusted

receive

Update Projection

Global
Scheduler

Manager(UpMgr)

requestlocks

Figure 4: DBMS simulation model.

can be granted. A waits-for graph is maintained to �nd
deadlock.

The resource manager manages CPUs and disks, and
processes queries. Each backend may have multiple
CPUs and disks. All CPUs and disks are de�ned as
resource objects in MODSIM II. We assume that all
CPUs are identical and disks are di�erent depending on
the data objects on these (see �gure 4). For simplicity,
we assume that data objects are uniformly distributed
on disk. For example, i-th data object is located at the
disk (i mod m) where m is the total number of disks at
the backend.

Simulation parameters related to each backend
DBMS is presented in table 3. ProcessLockTime

Table 3: Simulation parameters related to backends.

Parameter Meaning
NumDataObj[i] Number of data objects at level i
ProcessLockTime Lock processing time for each query
NumCPU[i] Number of CPUs in backend i
NumDisk[i] Number of disks in backend i
HitRatio Bu�er pool hit probability
WriteonMemTime Time to write a data object on memory
InitWriteCPU Time to initiate a disk write
MaxDiskTime Maximum disk read/write time
MinDiskTime Minimum disk read/write time
MaxCPUTime Maximum processing time
MinCPUTime Minimum processing time

parameter speci�es the �xed CPU time to process the
lock request per query by the concurrency control man-
ager.

When the resource manager processes queries, it
will read necessary data either from memory or disk.
HitRatio parameter speci�es the ratio between read-
ing from memory and reading from disk. Processing
time for a data object is uniformly distributed between
MaxCPUTime and MinCPUTime if the data object is in
memory. If the data object is in disk then it takes extra
disk access time that is uniformly distributed between
MaxDiskTime and MinDiskTime.

All modi�ed data will be temporarily written on
memory. WriteonMemTime parameter speci�es a �xed
time to write a modi�ed data object on memory. The
resource manager writes modi�ed data on disk when it
is asked to commit a transaction. The time to write
a data object on disk is also uniformly distributed be-
tween MaxDiskTime and MinDiskTime. InitWriteCPU
models the CPU overhead associated with initiating a
disk write.

Let us trace how a typical transaction is executed.

1. The transaction manager receives a transaction.

2. The transaction manager dispatchs a query to the
concurrency control manager.

3. If all the required locks for read and write sets
of the query can be granted then those will be
granted. Otherwise it will be put in the Blocked
queue until those locks can be granted. Once locks
for a query are granted, it is sent back to the trans-
action manager.

4. The transaction manager receives a query whose
locks are just granted and sends it to the resource
manager to execute it.

5. The resource manager executes a query if re-
sources (i.e., CPU and disks) are available. If more
than one resource is available then objects in read
(write) set will be processed simultaneously. If the
necessary resources are not available temporarily,
then the query has to wait for resources. When the
execution of the query is done, it will be returned
to the transaction manager.

6. The transaction manager repeats steps (2) { (5)
until all queries in a transaction are executed.
Once all queries have been executed then the
transaction manager asks the resource manager to
commit the transaction and asks the concurrency
control manager to release locks.

The resource manager makes use of as much paral-
lelism as possible. It uses the fork-and-join construct.
Consider the backend that has two disks and three read
operations from disk that read data objects 1, 2, and 4.
Data object 1 should be read from disk 1 and data ob-
jects 2 and 4 should be read from disk 0. Even though
there is no conict to read data objects 1, 2, and 4
in parallel, there is a resource conict. Hence, even if
all three read operations are forked at once, it actually
will be executed as in �gure 5.

Fork

Join

read data 1 wait for disk 0

read data 4

from disk 1

read data 2
from disk 0

from disk 0

Figure 5: Execution pattern for reading data objects
1, 2, and 4.

The parallelism among queries are not exploited in
our simulation (only parallelism among transactions
and parallelism within read (write) set have been ex-
ploited). Hence the exploitation of parallelism can be
controlled by the number of queries in a transaction
and the number of data objects in read and write sets.

5 Experiments

This section reports selected results of the performance
comparison between SINTRA and a typical conven-
tional (single-level) DBMS. The conventional DBMS
that we used is one of the backend DBMS which is
described in section 4.3.
Since update projections are executed in serial while

many user transactions may be executed concurrently,
the execution of update projections can be delayed de-
pending on user workload. In our experiment, the time
to propagate update projections to the next level has
been measured (i.e., from the commit time of an up-
date projection at one level to the commit time of the
update projection at the next level). Also the length
of the update projection queue has been monitored to
make sure our results are steady state results.

The SINTRA DBMS consists of four security levels.
Table 4 shows the values of the �xed simulation pa-
rameters for the SINTRA. Table 5 shows the values of

Table 4: Simulation parameter settings I.

Parameter Setting
MaxTranSize 5
MinTranSize 1
MaxQuerySize 7
MinQuerySize 3
WriteProb 50 %
ReadDownProb[i] 20% when i = 2, 30% when i = 3,

40% when i = 4
NumDataObj[i] 800 when i = 1, 1400 when i = 2,

1700 when i = 3, 2000 when i = 4
FrontDiskTime 12 ms
FrontCPUTime 1 ms
Comm 0.3 ms
ProcessLockTime 0.5 ms
HitRatio 50 %
WriteonMemTime 2 ms
InitWriteCPU 2 ms
MaxDiskTime 36 ms
MinDiskTime 12 ms
MaxCPUTime 10 ms
MinCPUTime 2 ms

varying simulation parameters for the SINTRA (i.e.,
unless speci�ed otherwise, the following values have
been used). The speci�c values of simulation parame-

Table 5: Simulation parameter settings II.

Parameter Setting
NumTerms[i] 8 when i = 1, 6 when i = 2,

4 when i = 3, 2 when i = 4
ThinkTime 0.0 sec
RetrieveProb 40 %
InsertProb 20 %
deleteProb 20 %
ReplaceProb 20 %
NumCPU[i] 1 for all i
NumDisk[i] 2 for all i

ters that apply only to a particular experiment will be
speci�ed in an appropriate section. Hence, the values
in each section overwrite the values of parameters in
table 5.

Since the SINTRA DBMS provides a single MLS
database management service, some of the correspond-
ing simulation parameters for the conventional (non-
secure, single-level) DBMS are the sum of 4 di�erent
backends of the SINTRA DBMS. For example, if there
are w, x, y, z terminals at 4 security levels in the SIN-
TRA then there are (w + x + y + z) terminals in the

corresponding conventional DBMS. In our experiment,
we use 20 terminals for conventional DBMS. Multipro-
gramming level 20 was chosen because the throughput
is maximized around this value in the simulation of our
conventional DBMS (see �gure 6).

4

5

6

7

1 10 20 30 40 50 70 90

T
h
r
o
u
g
h
t
p
u
t

(
t
r
a
n
s
a
c
t
i
o
n
s
/
s
e
c
)

Multiprogramming Level

Figure 6: Throughput vs. Multiprogramming level for
a conventional DBMS.

In our simulation, the conventional system has 2000
data objects, which is the same number of data objects
as in level 4 of the SINTRA system. Ambiguous pa-
rameters for the conventional DBMS will be speci�ed
at each section.

5.1 Think time

First, we simulate an interactive environment with dif-
ferent think times between transactions. Remember
that the think time is de�ned as the time between the
commit time of one transaction and the start time of
the next transaction at each terminal. The result of
experiments is shown in �gure 7.

We could not report the throughput of SINTRA
when the think time is less than 3.3 sec because the
SINTRA DBMS never reached the steady state. In
other words, if the think time is less than 3.3 sec then
the rate of generating update projections is greater
than the rate of processing those at higher level back-
ends with our input pro�le (i.e., the length of update
projection queue is growing). If there exists enough
think time (3.3 sec or more in our experiment) then up-
date projections can be processed between user trans-
actions (i.e., during think time). Hence, we could ob-
tain the steady state throughput.

The two systems (i.e., SINTRA and single-level
DBMS) show almost the same throughput. Especially,

2

3

4

5

6

7

2 3.3 4 6 8

T
h
r
o
u
g
h
t
p
u
t

(
t
r
a
n
s
a
c
t
i
o
n
s
/
s
e
c
)

Think Time (sec)

’SINTRA’
’Single-level DBMS’

Figure 7: Throughput vs. Mean think time.

if the think time is longer than 6 seconds, these systems
display almost identical throughput. This experiment
shows that if the think time is long (i.e., if the think
time is much longer than the average execution time of
transactions), the throughput of the systems become
identical because the think time becomes the dominat-
ing factor (i.e., the system is underloaded).

This experiment reveals an important fact: The SIN-
TRA system needs a strategy to prevent the lower lev-
els from overwhelming the higher levels with their up-
dates. That strategy can be a ow control mechanism.

In the following sections when we simulate batch en-
vironment, SINTRA uses a simple dynamic ow con-
trol mechanism that inserts a delay to the response
to user transactions. When the trusted connection re-
ceives a response from the backend i, it �nds the max-
imum length of update projection queues from level i
and higher. Then it postpones the response depending
on the maximum queue size (i.e., in our experiment,
500 ms � maximum length). The reason for searching
only its own level and higher level queues is as follows.
For example, let long update projection queue occur
at level 3. Since level 2 and level 1 are responsible for
this long queue, user transactions at level 1 and level 2
need to be slowed down. Also user transactions at level
3 need to be slowed down so that update projections
can be processed. However, user transactions at level 4
are not responsible for this long queue, and hence they
need not be slowed down. This strategy has been cho-
sen because it works well for our simulation; however,
we have not identi�ed the best strategy at this time.

5.2 Query Mix

Since all update projections must be propagated to the
higher security levels in the replicated architecture, the
ratio among di�erent type of queries (especially retrieve
vs. update queries) may a�ect the performance. To
investigate this e�ect, we have experimented with the
following four options for query mix (see table 5):

1. RetrieveProb = 0.25, InsertProb = 0.25,
deleteProb = 0.25, ReplaceProb = 0.25.

2. RetrieveProb = 0.4, InsertProb = 0.2,
deleteProb = 0.2, ReplaceProb = 0.2.

3. RetrieveProb = 0.5, InsertProb = 0.16,
deleteProb = 0.16, ReplaceProb = 0.18.

4. RetrieveProb = 0.75, InsertProb = 0.08,
deleteProb = 0.08, ReplaceProb = 0.09.

4

5

6

7

8

9

10

11

1 2 3 4

T
h
r
o
u
g
h
t
p
u
t

(
t
r
a
n
s
a
c
t
i
o
n
s
/
s
e
c
)

Query Mix Options

’SINTRA’
’Single-level DBMS’

Figure 8: Throughput vs. Di�erent query mixes.

The result demonstrate that SINTRA performs well
for retrieve oriented input pro�les. However, consider-
ing that each SINTRA backend has a lighter workload
than the single-level system, the performance of SIN-
TRA did not meet our expectation.

5.3 User Mix

Consider an environment where very few users have top
secret or secret clearances but many have unclassi�ed
or con�dential clearances. In this case, there are a large
number of users at lower security levels and a small
number of users at higher levels.
In this section, we have used di�erent user (transac-

tion) mix options. The number of terminals at di�erent

security levels are (Note that level 1 is the lowest secu-
rity level):

1. NumTerms[1] = 5, NumTerms[2] = 5,
NumTerms[3] = 5, NumTerms[4] = 5.

2. NumTerms[1] = 8, NumTerms[2] = 6,
NumTerms[3] = 4, NumTerms[4] = 2.

3. NumTerms[1] = 10, NumTerms[2] = 6,
NumTerms[3] = 2, NumTerms[4] = 2.

4. NumTerms[1] = 16, NumTerms[2] = 2,
NumTerms[3] = 1, NumTerms[4] = 1.

The results of our experiments are shown in �gure 9.

5

6

7

8

1 2 3 4

T
h
r
o
u
g
h
t
p
u
t

(
t
r
a
n
s
a
c
t
i
o
n
s
/
s
e
c
)

User Mix Options

’SINTRA’
’Single-level DBMS’

Figure 9: Throughput vs. Di�erent user mixes.

Considering that no SINTRA backend has higher
workload than a single-level DBMS, this was an un-
expected result. In the case of option 4, in speci�c,
despite that the workloads at higher level backends are
lighter than that of the level 1 backend, the perfor-
mance has not improved. Hence, the workload of up-
date projections from lower levels cannot be the reason
for this unexpected result.
A careful analysis of the simulation shows that the

performance bottleneck was not the lack of resources
but rather lack of concurrency. In section 2 and 4.2,
we explained that update projections will be submitted
to DBMS one by one to maintain the order of serial-
ization that was determined at the lower level DBMS.
Hence, there is no concurrency among update projec-
tions, and this results in update projections staying in
the update projection queue for long time. This makes
sense from �gure 6, where we observed that the per-
formance su�ers when the level of concurrency is too
low.

For a general security lattice, update projections
must be submitted one by one to maintain the serial-
ization order that was determined at the lower level [7].
However, if the security classes form a completely or-
dered set, then update projections that do not conict
with each other can be submitted to DBMS simultane-
ously [7]. In the following section, we take advantage
of this fact and show that the performance of SINTRA
system can be improved.

5.4 Using Data Dependence Analysis

It is well known that the serialization order among non-
conicting update projections need not be maintained
if the security classes form a completely ordered set
[7]. Hence, if there are update projections that do not
conict with each other then those can be submitted
to the DBMS simultaneously. The data dependence
analysis [9] that detects conicts among transactions
without the knowledge of data or the concurrency con-
trol mechanism of backend DBMSs has been used to
increase parallelism among update projections.
Suppose that the update projection manager receives

a sequence of update projections (U1; U2; U3; ::: ; Un).
Since U1 is the �rst update projection, it will be sub-
mitted to the backend DBMS. The dependence analysis
is applied between U1 and U2. If there is dependency
then U2 and the remaining update projections have to
wait until U1 is committed. If there is no dependency
between U1 and U2 then U2 can be submitted to the
backend DBMS before U1 is committed. In general,
Ui can be submitted only if there is no dependency
between Ui and all update projections that have been
submitted but have not committed.
The dependence analysis can remove all dependence

relationships between U1 and other update projections
as soon as U1 is committed. Suppose that at a later
time an additional transaction arrives, making the se-
quence (U2; U3; ::: ; Un; Un+1). All existing depen-
dence relationships are still valid; only the dependence
relationships between Un+1 and other update projec-
tions need to be analyzed.
We perform the same experiments that were per-

formed in sections 5.1, 5.2 and 5.3. Data dependence
analysis is performed by the update projection man-
ager to submit as many non-conicting update projec-
tions as possible at once. Figure 10 shows performance
comparison with di�erent think times.
We observed steady state behavior of SINTRA when

the think time is greater or equal to 2.1 second. In
other words, the concurrent execution of update pro-
jections helped to reduce the queue life of update pro-
jections.

2

3

4

5

6

7

8

2 4 6 8

T
h
r
o
u
g
h
t
p
u
t

(
t
r
a
n
s
a
c
t
i
o
n
s
/
s
e
c
)

Think Time (sec)

’SINTRA’
’Single-level DBMS’

Figure 10: Throughput vs. Mean think time.

Figure 11 shows the performance comparison with
di�erent query mixes.

5

6

7

8

9

10

11

12

13

14

1 2 3 4

T
h
r
o
u
g
h
t
p
u
t

(
t
r
a
n
s
a
c
t
i
o
n
s
/
s
e
c
)

Query Mix Options

’SINTRA’
’Single-level DBMS’

Figure 11: Throughput vs. Di�erent query mixes.

As compared to Figure 8, throughput has increased at
all the query mix options.

Figure 12 shows the performance comparison with
various user mixes at di�erent security levels.

The results are much more encouraging for SINTRA.
Also the above results show that the performance of
SINTRA is much more sensitive to the type of queries
than the number of users at di�erent security levels.

6 Summary

This paper reports selected results of the simulation
study that compares the throughput for the SINTRA

5

6

7

8

1 2 3 4

T
h
r
o
u
g
h
t
p
u
t

(
t
r
a
n
s
a
c
t
i
o
n
s
/
s
e
c
)

User Mix Options

’SINTRA’
’Single-level DBMS’

Figure 12: Throughput vs. Di�erent user mixes.

multilevel database system to a non-secure, single-level
database system. The SINTRA system uses physi-
cal separation and data replication to provide security.
Additional bene�t of extra hardware of the replicated
approach is the performance improvement. Our simu-
lation study shows that extra hardware actually helps
to improve performance. Our results also show that
the SINTRA performs relatively well for the update
oriented input pro�les and very well for the retrieve-
oriented input pro�les.

Our simulation reveals that the main performance
bottleneck of SINTRA system is the lack of concur-
rency among update projections. Data dependence
analysis that can detect dependency among update
projections can be used to alleviate this problem.

Our future work includes: (1) investigate methods
that can increase the parallelism among update pro-
jections, (2) investigate dynamic secure ow control
strategies. We plan to experiment with the communi-
cation pump [8], and (3) investigate the types of hard-
ware con�guration (especially, computing power and
I/O speeds) that are needed to meet a speci�c perfor-
mance and cost requirements of the user.

References

[1] Multilevel Data Management Security, Air Force Stud-
ies Board, Commission on Engineering and Tech-

nical Systems, National Research Council, National

Academy Press, Washington, D.C. (1983).

[2] Bell, D. E., and LaPadula, L. J. Secure computer sys-

tems: Uni�ed exposition and multics interpretation.

The Mitre Corp, (1976).

[3] Department of Defense National Computer Security

Center, Trusted computer system evaluation criteria,
DoD5200.28-STD (1985).

[4] Denning, D. Commutative �lters for reducing infer-

ence threats in multilevel database systems. The IEEE

symposium on Security and Privacy (1985).

[5] Froscher, J. N., and Meadows, C. Achieving a trusted

database management systems using parallelism. in

Database Security II: Status and Prospects (North-
Holland 1989).

[6] Jensen, C., et al. SDDM: A prototype of a distributed

architecture for database security. Conference on Data

Engineering (1989).

[7] Kang, M. H., Froscher, J. N., and Costich, O. A
practical transaction model and untrusted transaction

manager for multilevel-secure database systems. The

Eighth IFIP Workshop on Database Security (1992).

[8] Kang, M. H., and Ira S. Moskowitz. A pump for rapid,

reliable, secure communication. ACM Conference on

Computer and Communications Security (1993).

[9] Kang, M. H. Data dependence analysis for an un-
trusted transaction manager. Conference on Informa-

tion and Knowledge Management (1992).

[10] Kang, M. H., et el. Achieving database security
through data replication: The SINTRA prototype.

Submitted for publication (1994).

[11] Lunt, T., et al. The SeaView security model. IEEE

Transactions on Software Engineering, 16, 6 (1990).

[12] O'Connor, J., and Gray, J. A distributed architecture

for multilevel database security. National Computer

Security Conference (1988).

